URAL1009[K-based numbers]

一道数学题,排列组合。


N位中有i个取0,且不连续,不前导
i个0:
      0一共有(N-i)!/(((N-i*2)!)*(i!))种插法(明显N-i>=i,即N>=i*2)


      (N-i)!/(((N-i*2)!)*(i!))就是传说中的C(N-i,i)
N-i个非0:
         他们一共有(K-1)^(N-i)种可能
要求的就是sum{(N-i)!/(((N-i*2)!)*(i!))*((K-1)^(N-i)), 0<=i<=N/2}


CEDE:


/*


PROGRAM: $PROGRAM


AUTHOR: Su Jiao


DATE: 2010-3-13


DESCRIPTION:


$DESCRIPTION


*/


#include <iostream>


using std::cin;


using std::cout;


using std::endl;


#include <sstream>


using std::stringstream;


#include <vector>


using std::vector;


#include <string>


using std::string;


#include <stack>


using std::stack;


#include <queue>


using std::queue;


#include <map>


using std::map;


using std::pair;


using std::make_pair;


#include <algorithm>


using std::sort;


#include <cassert>


//using std::assert;


 


class Application


{


      int N,K;


      public:


      Application()


      {


                    cin>>N>>K;


      }


      int run()


      {


          /*        


          N位中有i个取0,且不连续,不前导


          i0:


                0一共有(N-i)!/(((N-i*2)!)*(i!))种插法(明显N-i>=i,即N>=i*2)


          N-i个非0:


                   他们一共有(K-1)^(N-i)种可能


          要求的就是sum{(N-i)!/(((N-i*2)!)*(i!))*((K-1)^(N-i)), 0<=i<=N/2}


          */


          long long int answer=0;


          for (int i=0;i*2<=N;i++)


          {


              long long int a=1,b=1,c=1,d=1;


              for (int j=1;j<=N-i;j++)


                  a*=j;


              for (int j=1;j<=N-i*2;j++)


                  b*=j;


              for (int j=1;j<=i;j++)


                  c*=j;


              for (int j=1;j<=N-i;j++)


                  d*=K-1;


              answer+=a/(b*c)*d;


          }


          cout<<answer<<endl;


          return 0;


      }


};


 


int main()


{


    Application app;


    return app.run();


}


 


 

留下评论

您的邮箱地址不会被公开。 必填项已用 * 标注